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This paper reports on a joint theoretical and experimental study of the Pauli quantum-mechanical stress
tensor T���x ,y� for open two-dimensional chaotic billiards. In the case of a finite current flow through the
system the interior wave function is expressed as �=u+ iv. With the assumption that u and v are Gaussian
random fields we derive analytic expressions for the statistical distributions for the quantum stress tensor
components T��. The Gaussian random field model is tested for a Sinai billiard with two opposite leads by
analyzing the scattering wave functions obtained numerically from the corresponding Schrödinger equation.
Two-dimensional quantum billiards may be emulated from planar microwave analogs. Hence we report on
microwave measurements for an open two-dimensional cavity and how the quantum stress tensor analog is
extracted from the recorded electric field. The agreement with the theoretical predictions for the distributions
for T���x ,y� is quite satisfactory for small net currents. However, a distinct difference between experiments
and theory is observed at higher net flow, which could be explained using a Gaussian random field, where the
net current was taken into account by an additional plane wave with a preferential direction and amplitude.
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I. INTRODUCTION

Chaotic quantum systems have been found to obey re-
markable universal laws related to, e.g., energy levels, eigen-
functions, transition amplitudes or transport properties.
These laws are independent of the details of individual sys-
tems and depend only on spin and time-reversal symmetries.
The universality manifests itself in various statistical distri-
butions, such as the famous Wigner-Dyson distribution for
the energy levels in closed systems, the Thomas-Porter dis-
tribution for wave-function intensities, wave-function form,
conductance fluctuations, etc. �for overviews, see e.g., Refs.
�1–4��. Two-dimensional ballistic systems, such as chaotic
quantum billiards �quantum dots� have played an important
role in the development of quantum chaos. These systems are
ideal because they have clear classical counterparts. Nano-
sized planar electron billiards may be fabricated from high-
mobility semiconductor heterostructures such as gated
modulation-doped GaAs/AlGaAs and external leads may be
attached for the injection and collection of charge carriers
�5�. In this way one may proceed continuously from com-
pletely closed systems to open ones. Here we will focus on
open chaotic systems in which a current flow is induced by
external means. Simulations for open chaotic two-
dimensional �2D� systems have shown, for example, that
there is an abundance of chaotic states that obey generalized
wave-function distributions that depend on the degree of
openness �6,7�. There are universal distributions and correla-
tion functions for nodal points and vortices �8–11� and the
closely related universal distributions �6,12� and correlation
functions for the probability current density �13,14�.

In this paper we will focus on the Pauli quantum stress
tensor �QST� for open planar chaotic billiards and its statis-
tical properties. As we will see QST supplements previous
studies of wave-function statistics and flow patterns in an
important way as it probes higher-order derivatives �irrespec-

tive of the chosen gauge� and thereby fine details of a wave
function. QST was introduced by Pauli �15,16� already in
1933 but in contrast to the corresponding classical entities
for electromagnetic fields and fluids �17�, for example, it has
remained somewhat esoteric since then. On the other hand,
studies of stress are in general an important part of material
science research and, on a more fundamental atomistic level,
stress originates from quantum mechanics. Efficient compu-
tational methods based on electronic structure calculations of
solids have therefore been developed to analyze both kinetic
and configurational contributions to stress �18–20�. The re-
cent advances in nanomechanics also puts more emphasis on
the quantum-mechanical nature of stress �21�. Furthermore it
features quantum hydrodynamic simulations of transport
properties of different quantum-sized semiconductor devices
such as resonant tunneling devices �RTD� and high electron
mobility transistors �HEMT� �22�, and in atomic physics and
chemistry �23,24�. All in all, QST is a fundamental concept
in quantum mechanics that brings together local forces and
the flow of probability density. Hence it is natural to extend
the previous studies of generic statistical distributions for
open chaotic quantum billiards to also include the case of
stress. Our choice of planar ballistic quantum billiards is fa-
vorable in this respect as stress is then only of kinetic origin.
Moreover, the motion in an open high-mobility billiard may
ideally be viewed as interaction free because the nominal
two-dimensional mean free path may exceed the dimensions
of the billiard itself. In this sense we are dealing, to a good
approximation, with single-particle behavior.

There is an ambiguity in the expression for the stress ten-
sor because any divergence-free tensor may be added with-
out affecting the forces �25,26�. For clarifying our definitions
and particular choice, we repeat the basic steps, albeit el-
ementary, in Pauli’s original derivation of his QST �15,16�. If
��x , t� is a solution to the Schödinger equation
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for a particle with mass m moving in the external potential V,
the components of the probability current density are
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Taking the time derivative of j� and using the right-hand side
of the Schrödinger equation above to substitute �� /�t, Pauli
arrived at the expression
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where T�� is his form of the quantum-mechanical stress ten-
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In the case of planar billiards, V may be set equal to zero,
and it is in that form that we will explore Eq. �4�. The kinetic
Pauli QST is sometimes referred to as the quantum-
mechanical momentum flux density, see, e.g., Ref. �20�.
From now on we will simply refer to it as QST.

There are obvious measurement problems associated with
QST for a quantum billiard, among them the limited spatial
resolution presently available �see, e.g., Ref. �27��. In the
case of 2D quantum billiards there is, however, a beautiful
way out of this dilemma, a way that we will follow here. It
turns out that single-particle states � in a hard-wall quantum
billiard with constant inner potential obey the same station-
ary Helmholtz equation and same boundary condition as
states in a flat microwave resonator �1�. This means that our
quantum billiard can be emulated from microwave analogs
in which the perpendicular electric field Ez takes the role of
the wave function �. Since the electric field may be mea-
sured this kind of emulation gives us a unique opportunity to
inspect the interior of a quantum billiard experimentally
�28–33�. Using the one-to-one correspondence between the
Poynting vector and the probability current density, probabil-
ity densities and currents have been studied in a microwave
billiard with a ferrite insert as well as in open billiards. Dis-
tribution functions based on measurements were obtained for
probability densities, currents, and vorticities. In addition,
vortex pair correlation functions have been extracted. For all
quantities studied �4,13,14� complete agreement was ob-
tained with predictions based on the assumption that wave
functions in a chaotic billiard may be represented by a ran-
dom superposition of monochromatic plane waves �34�.

The layout of the paper is the following. In Sec. II we
outline the meaning of QST by referring to Madelung’s hy-
drodynamic formulation of quantum mechanics from 1927
�35�. Section III presents the derivation of the distribution
functions for the components of the QST in 2D assuming
that the wave function may be described in terms of a ran-
dom Gaussian field and that the net current is zero. Although

our focus is on 2D, the results are extended to three dimen-
sional �3D� as well. Section IV deals with the distribution of
the quantum potential that appears naturally in the hydrody-
namic formulation of quantum mechanics. In Sec. V we
present numerical simulations of transport through an open
Sinai billiard with two opposite leads and a comparison with
the analytical Gaussian random field model is made. Micro-
wave measurements are reported in Sec. VI and analyzed in
terms of the quantum stress tensor. A Berry-type wave func-
tion with directional properties is introduced in the same
section to analyze the influence of net currents on the statis-
tical distributions for T���x ,y�.

II. MEANING OF QST

One of the earliest physical interpretations of the
Schrödinger equation is due to Madelung who introduced the
hydrodynamic formulation of quantum mechanics already in
1927 �35�. This is a helpful step to get a more intuitive un-
derstanding in classical terms of, for example, quantum-
mechanical probability densities and the meaning of quan-
tum stress �see, e.g., Refs. �36–38��. Madelung obtained the
quantum-mechanical �QM� hydrodynamic formulation by re-
writing the wave function � in polar form as

��x,t� = R�x,t�eiS�x,t�/�. �5�

The probability density is then �=R2. By introducing the
velocity v=�S�x , t� /m the probability density current or
probability flow is simply j=�v. Intuitively this is quite ap-
pealing. Inserting the polar form in the Pauli expression for
T�� in Eq. �4� we then have

T�,� =
�2

4m
�−

�2�

�x�x�

+
1

�

��

�x�

��

�x�
� + �mv�v�. �6�

There are two qualitatively different terms in Eq. �6�, a

quantum-mechanical term T̃�� that contains the factor � and
therefore vanishes in the classical limit �→0, plus the clas-
sical contribution �mv�v� which remains in the classical
limit. Using the notations above Eq. �3� gives the quantum
hydrodynamic analog of the familiar classical Navier-Stokes
equation for the flow of momentum density m�v,

m
��v�

�t
= − �

�

��T�� − ���V . �7�

Alternatively the Schrödinger equation may be rewritten as
the two familiar hydrodynamic equations in the Euler frame
�36–38�,

��

�t
+ � · ��v� = 0, �8�

�v

�t
+ �v · ��v = f/m + F/m , �9�

where the external force is due to external potential

f = − �V , �10�

and the internal force is due to the quantum potential
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F = − �VQM, VQM = −
�2

2m

�2R

R
. �11�

Then the internal force can be expressed by a stress tensor
for the probability fluid as

F� = − �
�

1

�

�T̃��

�x�

. �12�

Thus we are dealing with a “probability fluid” in which flow
lines and vorticity patterns are closely related to QST.

III. DISTRIBUTION OF QST FOR A QUANTUM BILLIARD

We now return to the full expression for the stress tensor
T�� in Eq. �4�. Consider a flat two-dimensional ballistic cav-
ity �quantum dot� with hard walls. Within the cavity we
therefore have V=0 and the corresponding Schrödinger
equation is ��+k2���x ,y�=0 with k2=2mE /�2, where k is
the wave number at energy E. In this case the wave function
may be chosen to be real if the system is closed and, as a
consequence, there is no interior probability density flow.
The wave function normalizes to one over the area A of the
cavity. On the other hand, if the system is open, for example,
by attaching external leads, and there is a net transport, the
wave function must be chosen complex. Thus,

� → u + iv , �13�

in which u and v independently obey the stationary
Schrödinger equation for the open system. In the following
discussion it is convenient to make a substitution to dimen-
sionless variables, kx→x�. Hence, we have ���
+1�u�x� ,y��=0 and similarly for v�x� ,y��. The size of the
cavity scales accordingly as A→A�.

If the shape of the cavity is chaotic we may assume that u
and v are to a good approximation random Gaussian func-
tions �RGFs� �6,39� with 	u2+v2
=1+�2, 	v2
=�2	u2
, 	uv

=0, and 	u
= 	v
=0. If u and v were correlated we can apply
a phase transformation �6� which makes these functions un-
correlated. Here, we use the definition

	¯
 =
1

A
�¯dA =

1

A�
�¯dA�. �14�

In what follows we thus use dimensionless derivatives in x�
and express the QST components in units of the energy
�2k2 /2m. From Eq. �4�, dropping the prime in the expres-
sions from now on, we then have

Txx = − u
�2u

�2x
− v

�2v
�2x

+ � �u

�x
�2

+ � �v
�x
�2

�15�

and

Txy = − u
�2u

�x � y
− v

�2v
�x � y

+
�u

�x

�u

�y
+

�v
�x

�v
�y

. �16�

Two-dimensional case. Let us first consider the distribu-
tions of the stress tensor for a two-dimensional complex
RGF �. In the following derivation we assume that the net

current from one lead to the other is so small that in practice
we are dealing with isotropic RGFs. We therefore have

	uuxx
 = −
1

2
, 	ux

2
 =
1

2
, 	uux
 = 0,

	uxuxx
 = 0, 	uxx
2 
 =

3

8
�17�

for the two-dimensional case. The corresponding expressions
for v follow simply by replacing u ,ux ,uxx, etc., by
v /� ,vx /� ,vxx /�, and so on.

For the component Txx in Eq. �15� we need the following
joint distribution of two RGFs �40�:

f�X� � =
1

2	�det�K�
exp�−

1

2
X� †K−1X�� , �18�

where X� †= �u ,v ,ux ,vx ,uxx ,vxx�, and the matrix K= 	X� X� †
.
For an isotropic RGF there are only correlations
	uuxx
 , 	vvxx
. Therefore, the only nontrivial block of the
total matrix K is the matrix

Ku = � 1 − 1/2
− 1/2 3/8 �, Ku

−1 = �3 4

4 8
� �19�

for the RGFs u ,uxx and the matrix Kv=�Ku for the two RGFs
for v and vxx. Correspondingly we obtain from Eq. �18�,

f�u,uxx� =
�8

2	
exp�−

3u2 + 8uuxx + 8uxx
2

2
� �20�

and

f�v,vxx� =
�8

2	�2exp�−
3v2 + 8vvxx + 8vxx

2

2�2 � . �21�

The characteristic function of the stress tensor component
Txx is


�a� = 	eiaTxx
 �22�

and takes the following explicit form:


�a� = 8
�1 − ia��1 − i�a��a − i��24 + 4����a − i��24 + 4��

��a + i��24 − 4����a − i��24 − 4���−1/2. �23�

As a result we obtain for the distribution function

P�Txx� =
1

2	
�

−�

�


�a�e−iaTxxda . �24�

For ��1 this integral may be calculated numerically. How-
ever, for �=1 it might be evaluated analytically. In particular,
for Txx
0 we obtain

P�Txx� =
2
�6

e−��24−4�Txx

�5 − �24�
− 8e−Txx, �25�

and for Txx�0,
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P�Txx� =
2
�6

e��24+4�Txx

�5 + �24�
. �26�

The distribution �26� is shown in Fig. 1 together with results
for different � values obtained by numerical evaluation of the
integral �24�. Note that the distributions are here given in
terms of 	Txx
=1+�2.

To repeat the calculations for the component Txy we need
the following correlators:

	uuxy
 = 0, 	uxuxy
 = 0, 	uyuxy
 = 0, 	uxy
2 
 =

1

8

�27�

for the 2D case. The correlation matrix turns out to be diag-
onal. Then the characteristic function


�a� = 2
�2 + �a/2�2��2 + ��a/2�2��1 + �a/2�2�

��1 + ��a/2�2��−1/2 �28�

defines the distribution P�Txy�. For �=1 the integral �24�
may, as above, be performed analytically to give

P�Txy� = 2e−2�Txy� − �2e−2�2�Txy�. �29�

The distributions P�Txy� in Eq. �29� are shown in Fig. 2 for
the two cases �=0 and �=1. Only two cases are shown be-
cause of the small differences in P�Txy� for different � val-
ues. The distributions are in this case given in terms of
�	Txy

2 
, where 	Txy
2 
= 3

8 �1+�4�.
Three-dimensional case. In this case the expressions in

Eq. �17� are to be replaced by

	uuxx
 = −
1

3
, 	ux

2
 =
1

3
,

	uux
 = 0, 	uxuxx
 = 0, 	uxx
2 
 =

1

5
, �30�

and Eq. �27� by

	uuxy
 = 0, 	uxuxy
 = 0, 	uyuxy
 = 0, 	uxy
2 
 =

1

15
.

�31�

Accordingly the correlation matrix �19� is

Ku = � 1 − 1/3
− 1/3 1/5 �, Ku

−1 =
1

4
� 9 15

15 45
� . �32�

The joint probability function of two RGFs u and uxx then
takes the following form:

f�u,uxx� =
�45

2	
exp�−

9u2 + 30uuxx + 45uxx
2

8
� . �33�

The characteristic function defining the distribution P�Txx� is


�a� =
45

�3/2 − ia��ia + 15/4 + 9�5/4�
1

�ia + 15/4 − 9�5/4�
�34�

and, correspondingly,

P�Txx� =
5

�7�5 − 15�
e−�9�5−15/4�Txx −

15

2
e−�3/2�Txx �35�

for Txx
0, and

P�Txx� =
5

�7�5 + 15�
e�9�5+15/4�Txx �36�

for Txx�0. Identical expressions hold for the two other di-
agonal components.

In a similar way we obtain the distribution function for
the off-diagonal components ���. For the specific case �
=1 we have, according to Eq. �31�,


�a� =
2

�3 + �a/2�2��1 + �a/2�2�
�37�

and

−1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

T
xx

P
(T

xx
)

FIG. 1. �Color online� The distribution P�Txx� for �=1 �dashed-
dotted line�, �=0.5 �dashed line�, and �=0 �solid line�. The stress
tensor component Txx is measured in terms of the mean value 	Txx
.

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

T
xy

P
(T

xy
)

FIG. 2. �Color online� The distribution P�Txy� for �=1 �dashed-
dotted line� and �=0 �solid line�. The stress tensor component Txy is
measured in terms of mean value �	Txy

2 
.
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P�Txy� =
15

4
e−3�Txy� −

3�15

4
e−�15�Txy�. �38�

The expression for the other off-diagonal components are, of
course, identical.

IV. DISTRIBUTION OF QUANTUM POTENTIAL

The quantum or internal force in Eq. �11� in the hydrody-
namic formulation is defined by the quantum potential VQM.
In terms of the RGFs u ,v it may be written as

VQM = − Vx − Vy ,

Vx =
uuxx + vvxx + ux

2 + vx
2

u2 + v2 − �uux + vvx

u2 + v2 �2

,

Vy =
uuyy + vvyy + uy

2 + vy
2

u2 + v2 − �uuy + vvy

u2 + v2 �2

. �39�

The second derivatives might be eliminated using the
Schrödinger equations for u and v, i.e., uxx+uyy =−u , vxx
+vyy =−v. As a result we have

VQM = 1 −
�uvx − vux�2 + �uvy − vuy�2

�2 , �40�

which implies

− � � VQM � 1. �41�

The distribution of the quantum potential is given by

P�VQM� =
1

2	
� exp�− iaVQM�
�a�da , �42�

where


�a� = 	exp�iaVQM�
 =� d6X� f�X��exp�iaVQM� , �43�

f�X� � is given by the same formula as Eq. �18�, however, with

vector X� += �u ,v ,ux ,vx ,uy ,vy� with the same correlators as
Eq. �19�.

For Eq. �43� we may now write with �=1, which is the
only case accessible in closed analytic form,


�a� =
1

2	
� dudv�x�y exp�−

1

2
�u2 + v2� + ia� , �44�

with

�x =
1

	
� duxdvx exp�− ux

2 − vx
2 +

ia�uux − vvx�2

�2 � .

�45�

The same expression holds for �y. The integration in Eq.
�45� gives

�x�y =
− i�

a − i�
. �46�

Substituting Eq. �46� into Eq. �44� we obtain


�a� = − i�
0

� drr3

a − ir2exp�ia − r2/2� , �47�

where r=��. Finally, substituting that into Eq. �42� we ob-
tain the distribution function for the quantum potential

P�VQM� =
1

2�3/2 − VQM�2 . �48�

The distribution �48� is normalized as �−�
1 P�V�dV=1. The

distribution of P�VQM� is shown in Fig. 3 and compared to a
numerical computation of the same statistics based on the
Berry conjecture for chaotic wave functions �34�

��r� =
1

�A
�

n

aneikn·r. �49�

Here A is the area of the random monochromatic plane wave
field with �kn�2=1 and the amplitudes for the random plane
waves obey the relation 	an

2
= 1
N . The Berry function in Eq.

�49� corresponds to �=1.

V. NUMERICAL SIMULATIONS OF SCATTERING
STATES IN AN OPEN CHAOTIC ELECTRON BILLIARD

A billiard becomes an open one when it is connected to
external reservoirs, for example, via attached leads. A sta-
tionary current through the system may be induced by apply-
ing suitable voltages to the reservoirs �or by a microwave
power source as in Sec. VI�. Here we consider hard-walled
Sinai-type billiards with two opposite normal leads. A first
step toward a numerical simulations of the quantum stress
tensor is to find the corresponding scattering states by solv-
ing the Schrödinger equation −�2�=k2� for the entire sys-
tem. The numerical procedure for this is well known. Thus,
we use the finite difference method for the interior of the
billiard in combination with the Ando boundary condition
�10,41� for incoming, reflected, and transmitted solutions in
the straight leads. Once a scattering wave function has been
computed in this way the fraction residing in the cavity itself

−4 −3 −2 −1 0 1
0

0.5

1

1.5

2

V
QM

F
(V

Q
M

)

FIG. 3. �Color online� The distribution of the quantum potential
�48� for �=1 compared to numerical histogram based on the Berry
function in Eq. �49�.
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is extracted for the statistical analysis. To ensure statistical
independence of the real and imaginary parts u and v a glo-
bal phase is removed as discussed in Ref. �6�. By this step we
also find the value of �. The interior wave function is then
normalized as defined in Sec. III.

For the numerical work it is convenient to make the sub-
stitution x→x /d and y→y /d, where d is the width of the
leads. Here we use dimensionless energy k2=E /E0 , E0
=�2 / �2md2�. �In the case of a semiconductor billiard referred
to in the introduction, the mass m should be the effective
conduction band mass m�.� Below we consider the specific
case of small wavelengths � as shown in Fig. 4. We will also
comment on the case when � is large compared to the di-
mensions of the cavity.

To ensure that the scattering wave function complies with
a complex RGF we consider a small aspect ratio d /L as in
Fig. 4 �see also Ref. �10��. The actual numerical size of the
Sinai billiard in Fig. 4 is chosen as follows: Height 346
�along transport�, width �L� 670, radius 87, and 20 for the
number of grid points across the wave guides �d�. Within this
configuration we now only excite scattering wave functions
with characteristic wavelengths ��L. As expected from Fig.
4 the wave function statistics show that both real and imagi-
nary parts, u and v, obey Gaussian statistics to a high degree
of accuracy. Results for transmission T and � are shown in
Fig. 5.

The corresponding distributions for the QST components
are given in Figs. 6 and 7 supplemented by the distributions
for jx with the x axis directed along transport. There is indeed
an overall good agreement between theory and simulations.
However, in the statistics for jx in Fig. 6 one notices a tiny
difference at small values of jx. The reason is that there is a
net current at this value of �, which is not incorporated in our
choice of analytic isotropic RGFs. The deviation is, however,
much too small to have an impact on the statistical analysis
presented here because the net current is such a tiny fraction
of the entire current pattern within the cavity. The case B
with �=0 implies that the scattering wave function in the
cavity is real �standing wave with transmission T=0 as seen
from Fig. 5�. Therefore, there is no current within the cavity.

The agreement with the analytic results for RGFs and the
present numerical modeling for billiards of finite size is ob-

viously good in the range of energies explored here. In order
to smooth fluctuations in the distributions of the stress tensor
we have averaged over the energy window shown in Fig. 5
�without scaling � to 1 in contrast to Fig. 11 of Sec. VI�. In
this way one finds a perfect agreement between theory and
numerical simulations as shown in Fig. 8. For future refer-
ence we note that the presence of net currents through the
billiard appears to have little or no influence on the distribu-
tions for the present two-lead configuration and choice of
energy range. We also note that the present results are not
sensitive to the position of the leads. For example, we have
also performed simulations for Sinai billiards with one dent
only and with the leads attached at corners.

We now turn to the complementary case of long wave-
lengths �low energies�. The low-energy regime is achieved
for large aspect ratio d /L which selects wave functions with

FIG. 4. View of the scattering wave function in the open Sinai
billiard for the case A shown in Fig. 5 for k2=30.878 in dimension-
less units �see text� and for small aspect ratio d /L=2 /67 �ratio
between the widths of the leads and the billiard�. The system is
asymmetric because the two opposite leads are slightly off the
middle symmetry line of the nominal billiard. Only the lowest chan-
nel is open in the leads.
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FIG. 5. �Color online� The transmission probability T �solid
line� and � �dashed line� as function of the dimensionless energy k2

for the Sinai billiard in Fig. 4. Two open circles show case A with
maximal �=0.75 and case B with the minimal �=0. At most only
one channel is open in the leads.
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FIG. 6. �Color online� Analytic and numerically simulated dis-
tributions of the components of the QST and probability density
current jx along the transport axis for the case A shown in Fig. 5
��=0.75�. As in Figs. 1 and 2 the diagonal components are mea-
sured in terms of their mean values while Txy and jx are given in
terms of �	Txy

2 
 and �	jx
2
, respectively. Solid lines refer to analytic

results for RGFs �Sec. III and Ref. �6�� and histograms to the
present numerical modeling. Because of the close agreement be-
tween the two cases, differences are barely resolved.
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� a few times less than L. Moreover a low-energy incoming
wave often excites bouncing modes. Numeric’s for the case
k2=12 and large aspect ratio d /L=1 /7 show that the scatter-
ing wave function may be rather different from a complex
RGF. Hence, the corresponding distributions for individual
states deviate appreciably from the theoretical RGF predic-
tions in Sec. III. However, by averaging over a wide energy
window, as above, one closes in on theory. In this way one
introduces an ensemble that, for practical purposes, mimics
the random Gaussian case. This aspect may be useful in ex-
perimental circumstances in which the short wavelength
limit might be hard to achieve.

VI. EXPERIMENTAL STUDIES

In quasi-2D resonators there is, as outlined in the intro-
duction, a one-to-one correspondence between the transverse
modes �TM� of the electromagnetic field and the wave func-
tions of the corresponding quantum billiard �1�. The z com-
ponent of the electromagnetic field Ez corresponds to the
quantum-mechanical wave function �, and the wave number
k2=�2 /c2 to the quantum-mechanical eigenenergy, where �
is the angular frequency of the TM mode and c the speed of
light. In the present study a rectangular cavity �16 cm
�21 cm� with rounded corners has been used, with two
attached leads with a width of 3 cm. Antennas placed in the
leads acted as source and drain for the microwaves �see Fig.

9�. Two wedge-shaped obstacles had been attached to two
sides of the billiard to avoid any bouncing ball structures in
the measurement. The same system has been used already for
the study of a number of transport studies �13,14� and for the
statistics of nodal domains and vortex distributions �42�. A
more detailed description of the experimental setup can be
found in Ref. �43�. The field distribution inside the cavity has
been obtained via a probe antenna moved on a grid with a
step size of 2.5 mm. To avoid boundary effects, only data
from the shaded region �see Fig. 9� has been considered in
the analysis.

The transmission from the source to the probe antenna has
been measured on the frequency range from 5.5 to 10 GHz
with a step size of 20 MHz, corresponding to wavelengths
from 3 to 5 cm. The transmission is proportional to the elec-
tric field strength, i.e., to the wave function, at the position of
the probe antenna. This assumes that the leak current into the
probe antenna may be neglected.

To check this we compared the experimentally obtained
distribution of wave function intensities �= ���2 with the
modified Porter-Thomas distribution �see, e.g., Ref. �6��,

p����2� = � exp�− �2���2�I0����2 − 1���2� , �50�

where

� =
1

2
�� +

1

�
� and �2 = 	v2
/	u2
 . �51�

Here � has not been fitted, but was taken directly from the
experimentally obtained values for 	u2
 and 	v2
, where we
have ensured that 	uv
=0 by applying a proper phase rota-
tion as in Ref. �6� and commented on in Sec. V. Whenever
�2, the weighted squared difference of the experimental data
and the modified Porter-Thomas distribution, was below
�cutoff=1.1, the pattern has been selected for the final analysis
of the statistics for the QST components.

Since the wave functions are experimentally known, in-
cluding their phases, the quantum-mechanical probability
density j=Im ����, and the components of the QST can be
obtained from the measurement. As mentioned, distributions
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FIG. 7. �Color online� Analytic and numerically simulated dis-
tributions of the components of the QST for the case B in Fig. 5
��=0�. The simulated distribution for Tyy is nearly identical to
P�Txx� and therefore not shown here. Because � vanishes there is
not any current within the cavity. �The choice of lines in the graphs
and units are the same as in Fig. 6. Because of the close agreement
between theory and simulations, differences are hardly noticeable.�
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FIG. 8. �Color online� Analytic and numerically simulated dis-
tributions of the components of stress tensor Txx and Txy averaged
over the energy window given in Fig. 5. The theoretical curves are
obtained also by averaging over computed � values shown in Fig. 5.
�The choice of lines and units are the same as in Fig. 6. The agree-
ment between theory and simulations is excellent, hence any small
differences are not resolved on the scale shown here.�

FIG. 9. �Color online� Sketch of the microwave billiard. The
basic size of the billiard is 16 cm�21 cm. The attached leads have
a width of 3 cm. The central shaded field �10 cm�14 cm� indi-
cates the region where the data have been collected. The measure-
ment grid size was 2.5 mm. The gray regions at the end of the two
leads indicate absorbers to mimic infinitely long channels. The
crosses indicate the antennas in the system and the winding path
illustrates how the third probing antenna is moved across the bil-
liard during measurements.
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of current densities and related quantities have already been
discussed previously in a number of papers �see, e.g., Refs.
�13,14��, but the QST has not been studied experimentally
before. As an example, Fig. 10 shows intensity �a� and the
phase �b� of the measured field at one frequency, as well as
the probability current �c�, and different components of the
stress tensor �d�–�f�.

The analysis of the data has been performed in dimen-
sionless coordinates x=kr. Since u and v are two indepen-
dent wave fields we may rescale the imaginary part to obtain
� values of one, thus mapping the experimental result to the
situation of a completely open billiard. This step made it
easy to superimpose the results from many field patterns of
different frequencies which originally had different � values.
For the analysis all wave functions passing the �2 test men-
tioned above have been used. Altogether 83 of 225 possible
patterns have been taken in the analysis.

Figure 11 shows the distribution of the QST components
obtained in this way. In addition the theoretical curves are
shown as solid lines. From the figure we see that there is a
good overall agreement between experiment and theory, but
also that nonstatistical deviations are unmistakable.

Deviations between experiment and theory had already
been found by us in the past in an open microwave billiard,
similar to the one used in the present experiment, in the
distribution of current components �13,14�. For the vertical y
component a complete agreement between experiment and
theory was found, but for the horizontal x component the
experimental distribution showed, in contrast to theory, a
pronounced skewness. The origin of this discrepancy was a
net current from the left-hand side to the right-hand side due
to source and drain in the attached waveguides. In a billiard
with broken time-reversal symmetry without open channels,
a complete agreement between experiment and theory had
been found, corroborating the net current hypothesis.

For a quantitative discussion of the net current we intro-
duced the normalized net current for each pattern

jnet =
	j

	�j�


, �52�

where the average is over all positions in the shaded region
in Fig. 9. In Fig. 12 the y component of jnet is plotted versus
its x component for each wave function. One notices an av-
erage net current pointing from the left-hand to the right-
hand side, with an angle of about 20° in an upward direction.
For the analysis we discriminated between three regimes for
the strength of the net current. Additionally we performed a
coordinate transformation such that for each pattern the vec-
tor of the net current is aligned along the positive x axis. This
rotation has been done for all experimental and numerical
results in this section.

In Fig. 13 the results for the three different regimes of net
current strengths are shown. For the distributions of the xx

FIG. 10. The figure shows different quantities obtained from the
measurement at the frequency �=8.5 GHz. In �a� the intensity of
the wave function is shown and in �b� its phase. The plot �c� shows
the Poynting vector of the system being equivalent to the probabil-
ity current density in quantum mechanics. In �d�–�f� different com-
ponents of the QST are shown, namely xy �d�, xx �e�, and yy com-
ponent �f�. Dark areas indicate higher values.

FIG. 11. �Color online� Results for the experimental statistical
distributions for the components of the QST stress tensor obtained
by a superposition of all experimental data scaled to �=1 as ex-
plained in the text. The solid lines correspond to the theoretical
predictions in Sec. III for �=1.
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and the yy component of the QST, a clear dependence on the
net current strength is found, where the deviations from
theory increase with an increasing net current. Txy is only
slightly affected by the net current, if at all. In the limit of a
tiny net current, all experimental distributions approach the
theoretical ones.

To further test the influence of the net current on the dis-
tributions of the stress tensor, we performed a numerical
simulation with random plane waves. Each random wave
field was calculated on an area of 500 mm�500 mm, with
a grid size of 2.5 mm. The random wave field consisted of
500 plane waves with random directions and amplitudes. The
frequency used for the numerics was �=5 GHz. To intro-
duce the net current we first performed a random superposi-
tion of plane waves according to Eq. �49�, and then added a
normalized plane wave with the wave vector K� pointing in
the same direction as the net current observed in the experi-
ment,

��r� =
1

�A
�a�eiK�·r + �

n=1

N

aneikn·r� . �53�

The strength of the resulting net current was adjusted by a
prefactor a�. The best agreement between the experiment and
the numeric’s was found for a�=0.45. To obtain sufficient
statistics we averaged over 200 different wave functions.
Thus a pattern similar to the one shown in Fig. 12 was ob-
tained with a cloud of dots extending over all three regimes
of net current considered with its center in the central re-
gime.

Figure 14 shows the distributions for the QST compo-
nents for numerical data derived from Eq. �53�. The same
three regimes as for the experimental study have been used.
The results from this type of simulation are in good qualita-
tive agreement with the experimental results. In particular
the deviations from the theory in Sec. III increase monoto-
nously with the net current, just as in the experiment.

An obvious question is why these net current effects are
unimportant in the simulations for the Sinai billiard pre-

FIG. 12. Plot of the net current as it is defined in Eq. �52�. The
shaded regions are indicating three different regimes of net current
strength which had been used in the later analysis.

FIG. 13. �Color online� Histograms of the QST distributions
obtained from experimental data. The thick lines correspond to the
smallest net currents �see Fig. 12�, the thin lines to intermediate
ones, and the dashed lines to ones with the largest net current. As in
Fig. 11 the solid lines correspond to the theoretical predictions in
Sec. III for �=1.

FIG. 14. �Color online� Histograms of the QST components
obtained from the simulations according to the wave function in Eq.
�53�. As in Fig. 13, the thick lines correspond to low, thin to inter-
mediate, and dashed lines to large net currents.
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sented in Sec. V. One may argue that the number of indepen-
dent plane waves entering at a given frequency is given by
the circumference of the billiard divided by � /2, where � is
the wavelength. Also the width of each wave guide is of the
order of � /2, i.e., the relative net current is approximately
given by the total widths of all openings divided by the cir-
cumference of the billiard. Following this argumentation the
net current in the experiments amounted to about 10% of the
total current, whereas in the simulations for the Sinai billiard
it was smaller by a factor of 10; i.e., too small to be of any
importance in the simulations.

We have shown that in the limit of small net currents, the
distributions of QST components obtained from the experi-
ment are well described by means of the random plane wave
model and the analytic distributions in Sec. III. On the other
hand, net currents are unavoidable in open systems. As indi-
cated by the simulations for a Sinai billiard in Sec. V, the
magnitudes and effect on the different stress tensor distribu-
tions may be sensitive to geometry and energy. Hence it
remains an open task for theory to incorporate net currents in

order to allow for a more realistic comparison with present
experimental results.
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